Understanding ISO/PAS 21448:2019 SOTIF
Home > Automotive Cybersecurity > Understanding ISO/PAS 21448:2019 SOTIF
Seminar Content
This three-day seminar is designed as an overview of Safety of the Intended Functionality (SOTIF) requirements of ISO/PAS 21448:2019. It provides the basis to manage the development of new products utilizing electrical and electronic elements to assure functional safety at the nominal design.
ISO 26262:2018 is concerned with the safety of the new driving systems as related to the malfunction behaviors due to the E/E failures. It does not concern itself with the nominal performance of the item.
SOTIF is related to the reasonably foreseeable misuse of the function by the driver or to the functional insufficiencies of the intended functionality. There are different methods for the qualitative analysis of the functional insufficiencies to ensure SOTIF for new E/E automotive systems. This seminar will provide an overview on the application of SOTIF for the new E/E automotive systems and present a system-theoretic approach to identify the foreseeable misuse scenarios and analyze the functional insufficiencies of the system in compliance with the ISO/PAS 21448:2019 standard.
Who Should Attend
Those involved in the design, development, and production of electrical and electronic based vehicle products, including the systems, software and hardware engineers, and managers. Basically, all those responsible for the development and implementation of hardware and software systems in motor vehicles.
Recommended Training and/or Experience
Participants should have a working knowledge of their organization’s New Product Development process.
Seminar Materials
Each participant will receive a seminar manual and a workbook including case study exercises.
Seminar Goals
- Identify the purpose and scope of ISO/PAS 21448:2019 and its relationship to SAE J3016
- Describe the framework for the ISO/PAS 21448:2019 standard
- Understand the key aspects of SOTIF
- Enumerate the requirements of SOTIF that support the design and development activities for Functional Safety
- Describe the impact of SOTIF on production and operational activities
- Describe Foreseeable Misuse Analysis
- Understand Functional Insufficiencies Analysis and related Safety Goals and Functional Safety Concept
- Describe Verification and Validation Strategies to argue completeness
Seminar Agenda
- Introduction and Overview to ISO/PAS 21448 (SOTIF)
- Relationship to SAEJ3016
- SOTIF Activities on Left Side of V-Model
- Functional and System Specification (Intended Functionality Content)
- Basics of SOTIF Application
- Identification and Evaluation of Hazards Caused by the Intended Functionality — Emergent Hazardous System Behavior and Hazardous Mental Models of the Human
- Identification and Evaluation of Triggering Events
- Functional Modifications to Reduce SOTIF-related Risks
- Application Challenges and How to Overcome Them
- Best Practice Examples
- Definition of the Verification and Validation Strategy
- Integration into Existing Testing Processes
- Enabling Virtual Validation
- Methodology and Criteria for SOTIF Release
- How to Make ISO 26262 and SOTIF Fit Together
Related Courses
|
Advanced Statistical Process Control (SPC)
|
Manufacturing Process Development using PFMEA (Process Flow, PFMEA, Control Plan, Part & Process Approval)
|
Basic Statistical Process Control (SPC)
|
Understanding Core Tools - (APQP, PPAP, DFMEA, DVP&R, PFMEA, Control Plan, SPC and MSA)
|
FMEA 4th Edition Update
|
Implementing MMOG with IATF 16949:2016
|
Measurement Systems Analysis (MSA) and Advanced Analysis (ANOVA)
|
Production Part Approval Process (PPAP) Workshop with IATF 16949:2016
|
Total Productive Maintenance (TPM)
|
Understanding Core Tools - APQP & PPAP
|
Understanding Core Tools - DFMEA & DVP&R
|
Understanding Core Tools - PFMEA & Control Plan
|
Understanding Core Tools - Statistical Process Control (SPC)
|
Understanding Core Tools - Measurement Systems Analysis (MSA)
|
Production Part Approval Process (PPAP 4th Edition)
|
APQP, FMEA and Control Plans (New Revision)
|
APQP 2nd Edition
|
Effective Problem Solving
|
7QC
|
APQP/PPAP
|
Machine Failure Mode Effect Analysis (MFMEA)
|
Understanding AIAG Sub-tier Supplier Management (CQI-19)
|
Advanced Product Quality Planning (APQP) Overview
|
Understanding the Five Phases of APQP
|
APQP Manufacturing Process Development using PFMEA and PPAP
|
Product Development using SFMEA, DFMEA and Associated Tools
|
Measurement Systems Analysis(MSA) and Statistical Process Control (SPC)
|
Conducting Internal and Supplier (Second Party) Audits to Automotive SPICE
|
AIAG-VDA Product FMEA Overview
|
SAE J3061 and ISO 21434:2020 Automotive Cybersecurity Certification
|
AIAG-VDA DFMEA (SFMEA and DFMEA) for Practitioners and Facilitators
|
AIAG-VDA FMEA for Managers and Implementers – Implementation Training
|
AIAG-VDA FMEA Understanding, Implications, and Strategy Executive Overview
|
AIAG-VDA Process FMEA and Control Plans for Practitioners and Facilitators
|
Understanding AIAG-VDA DFMEA (SFMEA and DFMEA) for Design and Project Team Members
|
Understanding AIAG-VDA Process FMEA and Control Plans for Process and Project Team Members
|
Product Integrity for the Product Safety & Conformance Representative (PSCR)
|
SAE J3061, ISO 21434:2020, and Related Standards: Automotive Cybersecurity Executive Overview
|
SAE J3061,ISO/SAE 21434:2020, and Related Standards: Overview for Functional Safety Engineers
|
SAE J3061 and ISO 21434:2020 Cybersecurity Engineering Defense & Protection Against Attacks
|
SAE J3061 and ISO 21434:2020 Automotive Cybersecurity Auditing and Assessment Certification
|
SAE J3061 and ISO 21434:2020 Conducting a Cybersecurity FMEA and Vulnerability Analysis Testing for Systems, Hardware and Software
|
SAE J3061 and ISO 21434:2020 Cybersecurity Threat Analysis and Risk Assessment (TARA)
|
Introduction to Autonomous and Electric Vehicles: A Functional Safety, SOTIF, and Cybersecurity Perspective
|
Reverse Failure Mode and Effect Analysis – RFMEA
|
Introduction to Systems Engineering: A Safety and Cybersecurity Perspective
|
Writing Effective Requirements, Test Cases, and H/S Interfaces for Cybersecurity
|
Preparing a Cybersecurity Case
|
Transitioning to BS VI Understanding and Strategising
|
Root Cause Analysis (RCA) - AIAG Approved
|
Minitab Tools- AIAG Approved
|
Multipoint DFMEA for Mechatronic and Electronic Systems using AIAG FMEA 4th Edition
|
Writing Effective Requirements and Test Cases for Automotive Software Performance Improvement and Capability Determination (ASPICE) and HWE PRM/PAM
|
Writing Effective Requirements and Test Cases
|
Multipoint DFMEA for Mechatronic and Electronic Systems using the AIAG-VDA FMEA Handbook Methodology
|
Understanding Core Tools (APQP/PPAP, DFMEA, DVP&R, SPC and MSA) Following the AIAG FMEA 4th Edition Methodology
|
Understanding Core Tools (APQP/PPAP, PFMEA, Control Plans, SPC and MSA) Following the AIAG FMEA 4th Edition Methodology
|
Understanding Core Tools (APQP/PPAP, DFMEA, DVP&R, SPC and MSA) Following the AIAG-VDA FMEA 1st Edition Methodology
|
Understanding Core Tools (APQP/PPAP, PFMEA, Control Plans, SPC and MSA) Following the AIAG-VDA FMEA 1st Edition Methodology
|
WP.29, ISO21434, and VDA CSMS - Automotive Cybersecurity Management Systems
|
Related Courses
|
Advanced Statistical Process Control (SPC)
|
Manufacturing Process Development using PFMEA (Process Flow, PFMEA, Control Plan, Part & Process Approval)
|
Basic Statistical Process Control (SPC)
|
Understanding Core Tools - (APQP, PPAP, DFMEA, DVP&R, PFMEA, Control Plan, SPC and MSA)
|
FMEA 4th Edition Update
|
Implementing MMOG with IATF 16949:2016
|
Measurement Systems Analysis (MSA) and Advanced Analysis (ANOVA)
|
Production Part Approval Process (PPAP) Workshop with IATF 16949:2016
|
Total Productive Maintenance (TPM)
|
Understanding Core Tools - APQP & PPAP
|
Understanding Core Tools - DFMEA & DVP&R
|
Understanding Core Tools - PFMEA & Control Plan
|
Understanding Core Tools - Statistical Process Control (SPC)
|
Understanding Core Tools - Measurement Systems Analysis (MSA)
|
Production Part Approval Process (PPAP 4th Edition)
|
APQP, FMEA and Control Plans (New Revision)
|
APQP 2nd Edition
|
Effective Problem Solving
|
7QC
|
APQP/PPAP
|
Machine Failure Mode Effect Analysis (MFMEA)
|
Understanding AIAG Sub-tier Supplier Management (CQI-19)
|
Advanced Product Quality Planning (APQP) Overview
|
Understanding the Five Phases of APQP
|
APQP Manufacturing Process Development using PFMEA and PPAP
|
Product Development using SFMEA, DFMEA and Associated Tools
|
Measurement Systems Analysis(MSA) and Statistical Process Control (SPC)
|
Conducting Internal and Supplier (Second Party) Audits to Automotive SPICE
|
AIAG-VDA Product FMEA Overview
|
SAE J3061 and ISO 21434:2020 Automotive Cybersecurity Certification
|
AIAG-VDA DFMEA (SFMEA and DFMEA) for Practitioners and Facilitators
|
AIAG-VDA FMEA for Managers and Implementers – Implementation Training
|
AIAG-VDA FMEA Understanding, Implications, and Strategy Executive Overview
|
AIAG-VDA Process FMEA and Control Plans for Practitioners and Facilitators
|
Understanding AIAG-VDA DFMEA (SFMEA and DFMEA) for Design and Project Team Members
|
Understanding AIAG-VDA Process FMEA and Control Plans for Process and Project Team Members
|
Product Integrity for the Product Safety & Conformance Representative (PSCR)
|
SAE J3061, ISO 21434:2020, and Related Standards: Automotive Cybersecurity Executive Overview
|
SAE J3061,ISO/SAE 21434:2020, and Related Standards: Overview for Functional Safety Engineers
|
SAE J3061 and ISO 21434:2020 Cybersecurity Engineering Defense & Protection Against Attacks
|
SAE J3061 and ISO 21434:2020 Automotive Cybersecurity Auditing and Assessment Certification
|
SAE J3061 and ISO 21434:2020 Conducting a Cybersecurity FMEA and Vulnerability Analysis Testing for Systems, Hardware and Software
|
SAE J3061 and ISO 21434:2020 Cybersecurity Threat Analysis and Risk Assessment (TARA)
|
Introduction to Autonomous and Electric Vehicles: A Functional Safety, SOTIF, and Cybersecurity Perspective
|
Reverse Failure Mode and Effect Analysis – RFMEA
|
Introduction to Systems Engineering: A Safety and Cybersecurity Perspective
|
Writing Effective Requirements, Test Cases, and H/S Interfaces for Cybersecurity
|
Preparing a Cybersecurity Case
|
Transitioning to BS VI Understanding and Strategising
|
Root Cause Analysis (RCA) - AIAG Approved
|
Minitab Tools- AIAG Approved
|
Multipoint DFMEA for Mechatronic and Electronic Systems using AIAG FMEA 4th Edition
|
Writing Effective Requirements and Test Cases for Automotive Software Performance Improvement and Capability Determination (ASPICE) and HWE PRM/PAM
|
Writing Effective Requirements and Test Cases
|
Multipoint DFMEA for Mechatronic and Electronic Systems using the AIAG-VDA FMEA Handbook Methodology
|
Understanding Core Tools (APQP/PPAP, DFMEA, DVP&R, SPC and MSA) Following the AIAG FMEA 4th Edition Methodology
|
Understanding Core Tools (APQP/PPAP, PFMEA, Control Plans, SPC and MSA) Following the AIAG FMEA 4th Edition Methodology
|
Understanding Core Tools (APQP/PPAP, DFMEA, DVP&R, SPC and MSA) Following the AIAG-VDA FMEA 1st Edition Methodology
|
Understanding Core Tools (APQP/PPAP, PFMEA, Control Plans, SPC and MSA) Following the AIAG-VDA FMEA 1st Edition Methodology
|
WP.29, ISO21434, and VDA CSMS - Automotive Cybersecurity Management Systems
|

|
|